The Extracellular Vesicle Foundry – evFOUNDRY

Project ID: 801367

Funded under: H2020-EU.1.2.1. - FET Open

Topic(s): FETOPEN-01-2016-2017 - FET-Open research and innovation actions

Call for proposal: H2020-FETOPEN-1-2016-2017

Funding scheme: RIA - Research and Innovation action

Participants

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Short name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONSORZIO INTERUNIVERSITARIO PER LO SVILUPPO DEI SISTEMI A GRANDE INTERFASE</td>
<td>CSGI</td>
<td>Italy</td>
</tr>
<tr>
<td>2</td>
<td>LUNDS UNIVERSITET</td>
<td>ULUND</td>
<td>Sweden</td>
</tr>
<tr>
<td>3</td>
<td>UNIVERSITY OF SOUTHAMPTON</td>
<td>SOUTHAMPTON</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>4</td>
<td>AARHUS UNIVERSITET</td>
<td>AU</td>
<td>Denmark</td>
</tr>
<tr>
<td>5</td>
<td>UNIVERSITEIT UTRECHT</td>
<td>UU</td>
<td>Netherlands</td>
</tr>
<tr>
<td>6</td>
<td>HANSABIOMED LIFE SCIENCES OU</td>
<td>HBM-LS</td>
<td>Estonia</td>
</tr>
</tbody>
</table>

DELIVERABLE D5.1. Project website online and logo

http://www.evfoundry.eu
Introduction

A preview of the evFOUNDRY project website was presented to the partners during the kick-off meeting, held in Florence on September 12th-13th, 2018. The final version of the website was put online on November 5th, 2018 at the web address http://www.evfoundry.eu.

The website was designed with the aim of disclosing the project, its activity and results to the public and of allowing the participants to exchange information and documents in an easy, reliable and secure way. In Fig. 1, a screenshot of the website homepage is shown (please also visit http://www.evfoundry.eu). A synopsis of the project is here given, together with a clickable map of the project partners and the more recent news and press releases. Below the menu bar, which features the project logo and the main menu, a slide show displays in sequence images representing key features of evFOUNDRY.

In the homepage footer the details of the evFOUNDRY funding and the EU logo are reported, together with the scientific and administrative contacts. Finally, the link to cookie policy is provided (http://www.evfoundry.eu/cookie_policy.php).

Logo

The official project logo (Fig. 2) was designed and approved by the partners. It appears in all the pages of the website and will be used in the header of all the documents of the project.

Main Menu

Fig. 3 shows the six main menu items, linked to the related sections of the website (please also visit http://www.evfoundry.eu/#top).

Here the Main Menu organization into the six sections follows:

HOME
PROJECT
NETWORK
NEWS
CONTACTS
RESERVED AREA

Website Sections

4.1. Home. Link to the homepage. The homepage can also be reached by clicking on the logo.

4.2. Project. In the Project section the aim of the project and its major objectives are reported. The link to the project on the CORDIS portal is also given. For a screenshot see Fig. 4 or visit http://www.evfoundry.eu/project.php.

4.3. Network. In this section the complete list of the partners involved in the project is reported (Fig. 5). By clicking on the logo of each partner, its specific page opens. Fig. 6 shows, for example, the screenshot of the page of Aarhus University (Denmark). In the page the partner, its role in the project and the involved personnel and expertise are briefly described. (please, also visit http://www.evfoundry.eu/partners/aarhus.php)

4.4. News

In this section the news about the project are reported (see Fig. 7 or visit http://www.evfoundry.eu/news/news.php). Here the project achievements and dissemination activities will be regularly posted. They will include publications, members participation to conferences and workshops, press coverage, website updates and more in general, all significative events regarding the project.
4.5. **Contacts.** Link to the scientific and administrative contacts, which are given in the homepage footer (see Fig. 8 or http://www.evfoundry.eu/index.php#contact). In the footer also, the link to cookie policy is provided (see Fig. 9 or http://www.evfoundry.eu/cookie_policy.php).

4.6. **Reserved Area.** This section is reserved for consortium’s partners and is to date under construction (Fig. 10). It will allow them to exchange information and documents in an easy, reliable and secure way.
Figure 1. Website homepage.
Figure 2. Official Project logo.

Figure 3. Main menu.

The Project

Extracellular vesicles (EVs) are natural cell-derived nanoparticles containing bioactive proteins and RNAs, which are newly recognized as the universal agents of intercellular and inter-organismal communication, in both normal and pathological processes.

EVs are reshaping our perspective on life sciences, environment and public health. They are under intensive investigation as early disease multi-biomarkers, while EV-based personalized therapeutic agents and vaccines have produced enticing results in early-phase clinical trials. However, EV exploitation is not supported by current manufacturing methods, which are inadequate in terms of purity and reproducibility or yield, time and cost.

evFOUNDRY targets a breakthrough technology able to streamline production of therapeutic EVs from sustainable sources, drawing the baseline for future EV bioprocessing, which is necessary for effective EV medical translation (large clinical trials and regulatory initiatives) and provides access to new EV applications (nanotechnology, nutraceuticals, cosmeceuticals, veterinary). To meet the challenge, evFOUNDRY will unravel how EVs and EV fluids interact with surfaces and leverage it to develop the first device for continuous production of high-grade EVs from milk and parasites, which are the most promising scalable sources of EVs with immune modulatory properties.

Major objectives include:

1. to determine the compositional, structural and colloidal properties of EVs that control their interaction with surfaces;
2. to engineer nanostructured surfaces integrated in microfluidic devices for separation of EV populations that are homogeneous in size and/or membrane properties from bovine milk and Ascaris incubation media;
3. to design an integrated modular system for the reproducible separation and analysis of these EVs under continuous flow;
4. to implement a lab-scale prototype for the continuous production of quality-compliant immune modulatory EVs.

Figure 4. Project Section.
Figure 5. Consortium network/Partners’ list.

Figure 6. Aarhus University page.
Figure 7. News section.
Figure 8. Contact page.

Figure 9. Cookie Policy.

Figure 10. Reserved area logo on the right.